July 11, 2013

We tend to view earthquakes as unpredictable phenomena caused by naturally shifting stresses in Earth's crust. In reality, however, a range of human activity can also induce earthquakes. William L. Ellsworth of the U.S. Center for Earthquake Research and Information at the University of Memphis (CERI) has established a recent dramatic increase in seismicity in the midwestern United States may be related to increases in deep wastewater injection. Original research  and rewiew of human impact on seismic activity are published in the issue Science and  BBC News reports  briefly.

Ellsworth demonstrates that microearthquakes (that is, those with magnitudes below 2) are routinely produced as part of the hydraulic fracturing (or “fracking”) process used to stimulate the production of oil, but the process as currently practiced appears to pose a low risk of inducing destructive earthquakes. More than 100,000 wells have been subjected to fracking in recent years, and the largest induced earthquake was magnitude 3.6, which is too small to pose a serious risk. Yet, wastewater disposal by injection into deep wells poses a higher risk, because this practice can induce larger earthquakes. For example, several of the largest earthquakes in the U.S. midcontinent in 2011 and 2012 may have been triggered by nearby disposal wells. The largest of these was a magnitude 5.6 event in central Oklahoma that destroyed 14 homes and injured two people. The mechanism responsible for inducing these events appears to be the well-understood process of weakening a preexisting fault by elevating the fluid pressure. However, only a small fraction of the more than 30,000 wastewater disposal wells appears to be problematic—typically those that dispose of very large volumes of water and/or communicate pressure perturbations directly into basement faults.

Injection-induced earthquakes, such as those that struck in 2011, clearly contribute to the seismic hazard. Quantifying their contribution presents difficult challenges that will require new research into the physics of induced earthquakes and the potential for inducing large-magnitude events. The petroleum industry needs clear requirements for operation, regulators must have a solid scientific basis for those requirements, and the public needs assurance that the regulations are sufficient and are being followed. The current regulatory frameworks for wastewater disposal wells were designed to protect potable water sources from contamination and do not address seismic safety. One consequence is that both the quantity and timeliness of information on injection volumes and pressures reported to regulatory agencies are far from ideal for managing earthquake risk from injection activities. In addition, seismic monitoring capabilities in many of the areas in which wastewater injection activities have increased are not capable of detecting small earthquake activity that may presage larger seismic events.

Source: http://www.sciencemag.org/content/341/6142/1225942.full

 

All news...